3,278 research outputs found

    PERFORMANCE EVALUATION OF HYBRID SOLAR AIRWATER HEATER WITH VARIOUS INLET AIR TEMPERATURE DURING HEATING PROCESS

    Get PDF
    Research about hybrid solar air-water heater that can heating both air and liquid has been conducted for enhancing the usage of solar thermal energy. In the previous study, thermal efficiency of this collector was investigated with many operating and external conditions, but all of previous experiment conducted using outdoor air as inlet air of collector. Thus, in this study, the performance change of hybrid solar air-water heater was investigated with change of inlet air temperature during air and liquid were heated simultaneously. As a result, thermal efficiency for liquid heating was increased with increment of the inlet air temperature. On the contrary to this, thermal efficiency for air heating of collector was decreased with increment of inlet air temperature. In case of total thermal efficiency of collector considered air and liquid heat gain, it was also decreased with increment of inlet air temperature. From these results, it was confirmed that using outdoor air directly as inlet air of collector is better for the use of solar energy. However it is hard to conclude that which is better between using outdoor air and heated air on the perspective of energy saving of building because heat storage performance was increased if the return air or any heated air is used as inlet air of hybrid solar air-water heater when air and liquid was heated simultaneously even air and total thermal efficiency is decreased. Thus, the necessity of more profound study and consideration about this as a further study was also confirmed

    A Fullterm Neonate with Respiratory Distress and Meconium Staining - Case SNUCH CPC-34 -

    Get PDF
    This male newborn baby was transferred from a private OB/GY clinic because he had not cried at birth on August 28, 1987. He was the second baby to a 32-year-old mother and was born by vacuum extraction at the gestational age of 38 3/7 weeks. At birth his skin was stained with meco-nium and he did not cry. In spite of resuscitation, he had no regular self respiration. He was transfer-red to SOWHA Children's Hospital one hour after birth. On physical examination, the body weight was 3,250 gm, height 51 cm, head circumference 36 cm and chest circumference 33 cm. Respiration was irregular. The skin was cyanotic and stained with meco-nium. The anterior fontanel was open and flat. A large caput succedaneum was noticed. The neck was supple. Chest wall retraction was prominent. Respiration was irregular but breathing sounds were unremarkable. The heart murmur was not heard. The abdomen was soft without distension. The liver and the spleen were not palpable. Extremities and external genitalia were unremarkable without cyanosis or deformity. General activity, Moro and sucking reflexes were poor

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Full text link
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques

    Fungal Secretome Database: Integrated platform for annotation of fungal secretomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fungi secrete various proteins that have diverse functions. Prediction of secretory proteins using only one program is unsatisfactory. To enhance prediction accuracy, we constructed Fungal Secretome Database (FSD).</p> <p>Description</p> <p>A three-layer hierarchical identification rule based on nine prediction programs was used to identify putative secretory proteins in 158 fungal/oomycete genomes (208,883 proteins, 15.21% of the total proteome). The presence of putative effectors containing known host targeting signals such as RXLX [EDQ] and RXLR was investigated, presenting the degree of bias along with the species. The FSD's user-friendly interface provides summaries of prediction results and diverse web-based analysis functions through Favorite, a personalized repository.</p> <p>Conclusions</p> <p>The FSD can serve as an integrated platform supporting researches on secretory proteins in the fungal kingdom. All data and functions described in this study can be accessed on the FSD web site at <url>http://fsd.snu.ac.kr/</url>.</p

    Emergence of robust 2D skyrmions in SrRuO3 ultrathin film without the capping layer

    Get PDF
    Magnetic skyrmions have fast evolved from a novelty, as a realization of topologically protected structure with particle-like character, into a promising platform for new types of magnetic storage. Significant engineering progress was achieved with the synthesis of compounds hosting room-temperature skyrmions in magnetic heterostructures, with the interfacial Dzyaloshinskii-Moriya interactions (DMI) conducive to the skyrmion formation. Here we report findings of ultrathin skyrmion formation in a few layers of SrRuO3 grown on SrTiO3 substrate without the heavy-metal capping layer. Measurement of the topological Hall effect (THE) reveals a robust stability of skyrmions in this platform, judging from the high value of the critical field 1.57 Tesla (T) at low temperature. THE survives as the field is tilted by as much as 85 degrees at 10 Kelvin, with the in-plane magnetic field reaching up to 6.5 T. Coherent Bragg Rod Analysis, or COBRA for short, on the same film proves the rumpling of the Ru-O plane to be the source of inversion symmetry breaking and DMI. First-principles calculations based on the structure obtained from COBRA find significant magnetic anisotropy in the SrRuO3 film to be the main source of skyrmion robustness. These features promise a few-layer SRO to be an important new platform for skyrmionics, without the necessity of introducing the capping layer to boost the spin-orbit coupling strength artificially.Comment: Supplementary Information available upon reques

    SNUGB: a versatile genome browser supporting comparative and functional fungal genomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the full genome sequences of <it>Saccharomyces cerevisiae</it> were released in 1996, genome sequences of over 90 fungal species have become publicly available. The heterogeneous formats of genome sequences archived in different sequencing centers hampered the integration of the data for efficient and comprehensive comparative analyses. The Comparative Fungal Genomics Platform (CFGP) was developed to archive these data via a single standardized format that can support multifaceted and integrated analyses of the data. To facilitate efficient data visualization and utilization within and across species based on the architecture of CFGP and associated databases, a new genome browser was needed.</p> <p>Results</p> <p>The Seoul National University Genome Browser (SNUGB) integrates various types of genomic information derived from 98 fungal/oomycete (137 datasets) and 34 plant and animal (38 datasets) species, graphically presents germane features and properties of each genome, and supports comparison between genomes. The SNUGB provides three different forms of the data presentation interface, including diagram, table, and text, and six different display options to support visualization and utilization of the stored information. Information for individual species can be quickly accessed via a new tool named the taxonomy browser. In addition, SNUGB offers four useful data annotation/analysis functions, including 'BLAST annotation.' The modular design of SNUGB makes its adoption to support other comparative genomic platforms easy and facilitates continuous expansion.</p> <p>Conclusion</p> <p>The SNUGB serves as a powerful platform supporting comparative and functional genomics within the fungal kingdom and also across other kingdoms. All data and functions are available at the web site <url>http://genomebrowser.snu.ac.kr/</url>.</p
    • โ€ฆ
    corecore